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Neural networks can be trained to provide solutions
in application domains where clear rules which would
allow symbolic solutions do not exist. Neural
networks in these domains still suffer from a major
disadvantage, in that there is no explanation for why a
particular decision was made by the network.

We present our method of generating if-then rules
expressing the trained neural network’s behaviour.
By using the causal index on characteristic input
patterns, we produce a list of inputs which were
significant in reaching the decision made, a set of
rules governing this decision, and the next most likely
decision the network could have made. This method
correctly produced rules for 94% of the decisions
made by a sample network.

1111 .... IIIInnnntttt rrrroooodddduuuucccctttt iiiioooonnnn

Feed-forward networks of a few layers trained by
back-propagation can be used to solve a variety of
problems. In this paper we will generally assume a
feed-forward network of three layers of processing
units. All connections are from units in one level to
the subsequent one, with no lateral, backward or
multilayer connections. Each unit has a simple
weighted connection from each unit in the layer
above. The network is trained using a training set of
patterns with desired outputs, using back-propagation
of error measures [1]. Most workers now use batch
rather than sequential pattern by pattern updating of
weights. In the examples we cite here we have used
the basic logistic activation function y=(1+e-x)-1.
Training by back-propagation is popular because of
its simplicity theoretically, and the ease of use and
production of such networks, and the wide availability
of low cost simulators.

The ability to learn from examples makes these
neural networks useful and powerful tools. One
application that is becoming increasingly popular is
that of using the trained neural network in the role of
a human expert. This has the advantage of reducing
large amounts of expensive expert time by learning
from example data during training. This method has
obvious advantages, however unlike conventional

expert systems the neural network has no ability to
provide any rule trace, or some sort of explanation as
to how it comes to its conclusions. Rather than
storing sets of rules the knowledge contained in a
neural network is stored in the weight values
distributed throughout the entire network.

We have produced an explanation facility for back-
propagation trained neural networks [2, 3].
Explanations do not simply consist of a set of rules
(or rule traces) as to why the network came to its
conclusion, but also include identification of
important factors in the input, and the next most
likely output of the network.

2222 .... CCCCaaaauuuussssaaaallll    IIIInnnnddddeeeexxxx

The Causal Index Cki is the rate of change of k with
respect to i . This indicates the relationship between
the kth output and the ith input neurons in the trained
neural network. The value of Cki indicates a positive
or negative correlation between input and output
signals. Using this value, explanation of the
importance of each input could be given by using
equations such as: If Cki is Positive and Large then
‘If i is large then k is large’.

Consider the three layer network described in Figure
1. The outputs of the neurons in the network are
given by the formulae:

yk = f(Uk2) = (1 + e-Uk2)-1

hj = f(Uj1) = (1 + e-Uj1)-1

Uk2 = ∑ wjk hj 
                               j

Uj1 =  ∑ wij xi
                   i

Where

• Uin : Sum i inputs in nth layer,
• wij : Weight from neuron i to neuron j,
• yk : Output neuron,
• f : Sigmoid function, and
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• hj : Hidden neuron.
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Figure 1: Structure of a three layered ANN with one
output

The rate of change of an output neuron yk with
respect to an input neuron xi is found by calculating
the derivative dyk/dxi using the chain rule of
differentiation.

dyk        dyk        dUk2     dhj       dUj1
         =            .            .           .         
dxi         dUk2      dhj       dUj1        dxi 

=  f'(Uk2).f'(Uj1).∑ wjk.wij    =   Cki
      j

This method has also been used in [4, 5], using the
assumption that the product f'(Uk2).f'(Uj1) is constant
for all k and j . The influence of xi on yk could thus
statically be determined from the weight matrix of the
trained network.

While this assumption may hold in some domains,
we have found that this does not hold in the domains
we have tried. Figure 2 demonstrates the value of the
product f'(Uk2).f'(Uj1)in a simple four input, two
hidden unit, and one output network, by holding three
of the inputs constant, and varying the fourth from 0
to 1. As we can readily see, the value varies, and is not
close to a constant.
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Figure 2:  All inputs initially OFF

To produce a general solution to the task of justifying
and explaining conclusions made by trained neural
networks, the Causal Index relationship of inputs to
outputs needs to be interpreted it to produce accurate,
understandable explanations which describe key
factors and their relationships. This interpretation of
the Causal Index information is using Characteristic
patterns. We have examined simple networks in
which the functionality is known, then generalised to
other networks and tested for accuracy. This paper
includes an extended example using real data. A
number of approaches not depending on the Causal
Index have been proposed, for example [6-9]. The
common problems most of these methods suffer
from is either a lack of generality, or an explosion of
generated rules.

3333 .... CCCChhhhaaaarrrraaaacccctttteeeerrrriiiisssstttt iiiicccc    PPPPaaaatttt tttteeeerrrrnnnnssss

The formula used in calculating the Causal Index
causes one major problem: the results are input
specific. This is a problem in two ways. If the
analysis can not be generalised to satisfy any set of
possible inputs or even any arbitrary subset of the set
of possible inputs, then creating explanations for each
input pattern is firstly not very efficient, and secondly
such extremely specific explanations are not ideal.
That is, an explanation is at least implicitly something
humans can generalise from. Thus, we require a more
general explanation which focuses on the key
elements distinguishing particular input patterns.

This problem has been overcome by using input
values representative of the input set. Finding a single
input pattern that is representative of the entire input
set is impossible. To achieve this an input pattern
must be found representing all the patterns that cause
an output to be both on and off; an obvious
contradiction. To solve this problem input patterns
are split into classes according to their effect on an
output. When the input pattern causes the output
being analysed to be turned on, it is classed as an ON
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input pattern, otherwise it is classed as an OFF input
pattern.

Using the mean or median of each input value, a
pattern representing each input class is created as a
Characteristic pattern for that class. A characteristic
ON pattern is a pattern characteristic of those input
patterns which turn an output on. Similarly a
characteristic OFF pattern is a pattern characteristic
of those input patterns which turn an output off. We
had used the median value initially, expecting to use a
more statistically mature means of finding the
Characteristic patterns, however in all the examples
we have examined so far, this has not yet been
necessary. Note that we consider here networks
where the output units represent membership in
categories by high output values. For networks where
an output unit’s value is used directly and not just as
a threshold, we can define Characteristic patterns
over subranges of the value of the output unit
activation.

The Characteristic patterns for a number of simple
4-2-1 networks trained on boolean functions of the
inputs, are shown below. Where either the ON or
OFF pattern is not useful, it has generally been
omitted. This occurs for instance in the network
trained on the disjunction of four boolean inputs with
the Characteristic ON pattern, where modifying one
input when the network produces an ON output has
no significant effect.

  Pattern - Network Input 1 Input 2 Input 3 Input 4

  ON - Conjunction 1.0 1.0 1.0 1.0
  OFF - Conjunction 0.466 0.466 0.466 0.466
  OFF - Disjunction 0.0 0.0 0.0 0.0
  OFF - Conj of Disj 0.284 0.284 0.284 0.284
  ON  - Disj of Conj 0.7 0.7 0.7 0.7
  OFF - Disj of Conj 0.3 0.3 0.3 0.3

Table 1: Characteristic patterns for a number of networks

4444 .... DDDDeeeerrrriiiivvvviiiinnnngggg    llllooooggggiiiiccccaaaallll    ffffoooorrrrmmmmuuuullllaaaaeeee

We show here the derivation of logical formulae from
Causal Index graphs of trained feed-forward neural
networks, in terms of a number of simple networks in
which the functionality is known. This is an
expository device, the networks demonstrated are not
considered significant in themselves.

4444....1111.... LLLLooooggggiiiiccccaaaallll    CCCCoooonnnnjjjjuuuunnnnccccttttiiiioooonnnn

Figure 3 shows the result of calculating the Causal
Index for each of the four inputs in the ON  pattern.
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Figure 3: Causal Index of inputs for (A AND B AND C
AND D) network – Ch. ON

The four separate curves shown in this graph are
almost identical. In each case, the network’s result is
completely dependent on the presence of all of the
inputs. We know that the result produced by the
network is the logical conjunction of the four inputs.
Inputs therefore, that produce curves as shown in
Figure 3 that result in complete change of the
networks output (ie from off to on) are interpreted as
crucial inputs.  Any crucial inputs are combined
using the conjunction operator.

The Causal Index was also calculated for each of the
four inputs in the characteristic OFF (input) pattern
for a network trained to perform the logical
conjunction of four inputs. The graph of this
calculation is not shown,  as it indicates a consistently
small value of the Causal Index.  Changing any
single input therefore has no effect on the network’s
output. The Characteristic patterns for all other
cases which are similarly not useful have been
omitted from Table 1.

4444....2222.... LLLLooooggggiiiiccccaaaallll    ddddiiiissssjjjjuuuunnnnccccttttiiiioooonnnn

Another network was trained to recognise the logical
disjunction of four inputs, and the Causal Index for
each input in the OFF pattern (Table 1) calculated.
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Figure 4: Causal Index of inputs for (A OR B OR C OR D)
network – Ch. OFF

The graph in Figure 4 shows all four curves are
almost identical.  The Causal Index calculated for
each input in the characteristic ON input shows
negligible change and is therefore omitted.

We know that this network performs the logical
disjunction of four inputs.  The only major difference
between the results in Figure 3 and Figure 4 is that
the curves are  produced using a Characteristic ON
input pattern in the first and a Characteristic OFF
pattern in the second.  Note that none of the inputs
are (singly) crucial for the output to become on.
Instead, any one of the inputs that produce the curves
in Figure 4 will turn the output from off to on.
Curves such as these found in Figure 4 will therefore
be interpreted as the logical disjunction of the inputs
from which they are derived.

4444....3333.... CCCCoooonnnnjjjjuuuunnnnccccttttiiiioooonnnn    ooooffff    DDDDiiiissssjjjjuuuunnnnccccttttiiiioooonnnnssss

To examine the conjunction of disjunctions a network
was trained to recognise the logical formula ((A OR
B) AND (C OR D)).  The Characteristic OFF input
for the network (from Table 1) yields the graph of
Causal Index shown in Figure 5.
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Figure 5: Causal Index of inputs for ((A OR B) AND (C
OR D))  network – Ch. OFF

Note that the peaks in the rate of change of the output
in this case do not indicate a complete change of
network output (this is found by examining the
network’s output over the same change in input).
Thus, change in any single input in this pattern does
not turn the output neuron on. The inputs A and B
are represented by the smaller two curves (appearing
identical), and C and D by the larger two curves (also
appearing identical). Using the previously devised
interpretations, Figure 5 indicates that turning any
two of these inputs on at the same time will cause the
output to change from off to on. The logical formula
that would be produced under this interpretation from
the graph is: ((A OR B) AND (C OR D)) OR ((A OR
C) AND (B OR D)) OR ((A OR D) AND (B OR C))).
This logical formula allows the output to be on in
more cases than the network produces, hence some
limitation in the interpretation must be found.

The sum of the maximum rate of change of Inputs A
and C and a similar sum of Inputs A and D are well
nigh identical, likewise the sums of Input B and C,
and Inputs B and D. These are the only combinations
that result in the sum of the maximum Rate of
Change (or Causal Index value) being the same. This
is desired as we know for this network that all of the
inputs are equally important, and therefore should
have the same effect (hence rate of change) on the
output. For this reason the interpretation of such a
graph is that multiple inputs not turning the output
o n , but appearing as peaks in a graph of a
Characteristic OFF pattern are combined in pairs of
equal (or very similar) maximum rates of change
using the OR connector. These pairs are then
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combined using the AND connector.
4444....4444.... DDDDiiiissssjjjjuuuunnnnccccttttiiiioooonnnn    ooooffff    CCCCoooonnnnjjjjuuuunnnnccccttttiiiioooonnnnssss

The final logical formula that we need to consider is
((A AND B) OR (C AND D)). The Characteristic
ON input (from Table 1) was used to produce the
graph of the Causal Index for each input in Figure 6.
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Figure 6: Causal Index of inputs for ((A AND B) OR (C
AND D))  network – Ch. ON

This shows large change in two of the inputs, A and
B, and no change in the other of the inputs C and D.
Using previous interpretations, the logical formula (A
AND B) can be deduced from this graph. In this
case, the Causal Index graph for the Characteristic
OFF pattern also shows activity, see Figure 7.
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This shows that inputs A and B have identical high
peaks, and that inputs C and D have smaller similar
peaks. The interpretation from this graph is that the
output of the network is turned on when either A or B
is on, however we already know from Figure 6 that
we require both A and B to be on.  Although showing
small peaks, the output is not turned on by singly
altering either of the inputs C or D. The interpretation
from the section on disjunctions needs to be
extended. There, inputs with similar low peaks in the
Causal Index were combined in pairs using O R
before being combined using AND. Here there are
only two inputs, and are combined using AND only.
In this case, the output  changes to on when both C
and D are on. The interpretation from this graph is
thus (A OR B OR (C AND D)), which is combined
with the results from the other Characteristic pattern.

Combining the interpretation is straightforward,
producing the logical expression stating the
constraints required to produce a positive output from
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the network is ((A AND B) OR (C AND D)), which
is the desired result. Note that we have achieved the
correct result, even though some asymmetry in the
final weights of the trained network produced some
difference in the apparent significance of the four
inputs. This is shown by the difference in behaviour
of A and B versus C and D. Since the trained network
performed correctly notwithstanding this asymmetry,
any rule derivation system must be able to handle this
to be useful in practice. Our method is clearly
sufficiently robust.

4444....5555.... EEEExxxxcccclllluuuussssiiiivvvveeee    OOOORRRR

It should be noted that the logical formulae described
above are complete, all logical expressions can be
expressed in these terms. For example A XOR B can
be expressed in the form (A AND ~B) OR (~A AND
B), which is a disjunction of two conjunctions.

Nevertheless, since the exclusive OR problem is
traditionally connected to the back-propagation
network, we will demonstrate that our method can
extract the appropriate logical rule. A network
consisting of two inputs, two hidden units and one
output was trained to recognise A XOR B.

This network is different to the previous ones, in that
the Characteristic ON and OFF patterns are
identical, having the value 0.5 for both of the inputs.

Figure 8 shows the Causal Index graph for the XOR
network.
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Figure 8: Causal Index of inputs for (A XOR B)  network –
both Ch. ON & Ch. OFF

The two curves are identical. Two peaks are present
for both input A and input B, one positive and one
negative. The positive peak on low value of both
inputs on the Characteristic ON pattern indicate that
a low value on either one of them is enough to turn
the output on. This produces the interpretation (A OR
B). The peaks on the Characteristic OFF pattern
would produce A AND B, however the peaks are
negative, thus the interpretation becomes ~(A AND

B). Simple algebra on (A OR B) AND ~(A AND B)
produces the desired (A AND ~B) OR (~A AND B).

4444....6666.... FFFFoooorrrrmmmmaaaalllliiiissssaaaattttiiiioooonnnn    ooooffff    IIIInnnntttteeeerrrrpppprrrreeeettttaaaattttiiiioooonnnn

For clarity, the interpretations derived in the
preceding sections are stated clearly below:

• Inputs having a large peak in rate of change of
an output (ie at least enough to turn the output
on) in a Characteristic ON input pattern are
combined using the conjunction operator. Eg, A
AND B.

• Inputs having a large peak in rate of change of
an output (ie at least enough to turn the output
o n ) in a Characteristic OFF pattern are
combined using the disjunction operator.Eg, A
OR B.

• Two inputs that appear on the graph of a
Characteristic ON input pattern that do not
turn the output completely off if set to zero are
interpreted as the disjunction of these inputs.
Eg, A OR B.

• Two inputs that appear on the graph of a
Characteristic OFF input pattern that do not
turn the output completely on when set to one,
are interpreted as the conjunction of these
inputs. Eg, A AND B.

• As a further restriction in the above two
interpretations, if more than two inputs occur
that do not completely turn an output on or off,
the combinations are done by firstly combining
inputs with the most similar graphs with the
AND or OR connectors respectively, then these
grouped inputs are combined by the apposite
connector. Eg, (A OR B) AND (C OR D) versus
(A AND B) OR (C AND D).

• A negative peak in any of the above signifies
NOT.

• As with all logical formulae, conjunctions take
precedence over disjunctions.

5555 .... DDDDeeeerrrriiiivvvviiiinnnngggg    nnnnuuuummmmeeeerrrriiiiccccaaaallll    ffffoooorrrrmmmmuuuullllaaaaeeee

We show here the derivation of numerical formulae
from Causal Index graphs. These formulae allow
non-Boolean values of inputs. The extension is
demonstrated in terms of a simple network composed
of two inputs, two hidden units, and one output unit
trained on the formula ((A < 0.2) OR (B > 0.6)).

The Causal Index graph for each input of the
Characteristic OFF pattern is shown in Figure 9.
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Figure 9:  Causal Index of inputs for ((A < 0.2) OR (B >
0.6)) network – Ch. OFF

The graph shows a large negative peak in the rate of
change for input A which then returns to a constant
level of zero at 0.2, and a large positive peak in the
rate of change for Input B which returns to zero at
0.6. This leads to the conclusion that the point at
which the Rate of Change returns to a constant level
is the value the input must reach to be significant.
Since the graph is that of a Characteristic OFF
pattern, the previous formalisation leads us to the
formula ((A < 0.2) OR (B ≥0.6)) for the output to be
on. This is the desired conclusion. We could have
also used the negative peak to indicate ~(A ≥ 0.2),
which translates to (A < 0.2). Note that the term (B ≥
0.6) is essentially the same as (B > 0.6) at the
numerical resolution to which this neural network
was trained.

Thus, when dealing with real input values, the cut off
point is the value at which the rate of change begins
to stabilise, usually when it returns to zero. This point
can then be used for numerical interpretation using
the formalised interpretation previously discussed for
the inputs’ relationships with the output.

5555....1111.... FFFFoooorrrrmmmmaaaalllliiiissssaaaattttiiiioooonnnn    ooooffff    IIIInnnntttteeeerrrrpppprrrreeeettttaaaattttiiiioooonnnn

The additional interpretations for numeric formulae.

• Inputs having a large positive peak in rate of
change of an output (ie at least enough to
turn the output on) use the ≥ comparison
operator, with a value derived from the point
where the rate of change stabilises. Eg, (B ≥
0.6).

• Inputs having a large negative peak in rate of
change of an output use the < comparison
operator. Eg, (A < 0.2).

• The above interpretations apply equally to
Characteristic ON and Characteristic OFF
patterns.

6666 .... DDDDeeeerrrriiiivvvviiiinnnngggg    rrrruuuulllleeeessss    iiiinnnn    aaaa    rrrreeeeaaaallll    eeeexxxxaaaammmmpppplllleeee::::    tttthhhheeee
MMMMaaaarrrrkkkk    PPPPrrrreeeeddddiiiiccccttttoooorrrr    nnnneeeettttwwwwoooorrrrkkkk

The network analysed is a three layered neural
network consisting of fourteen inputs, five hidden
units and four output units.  The network has been
trained on a set of assessment marks in an
undergraduate Computer Science subject to predict
the final result that a student will receive [2, 3]. The
assessments shown are combined to yield 40% of the
total mark, the last 60% being the exam which is
omitted. Thus, the task is to predict the final mark
which was calculated using the exam mark, from only
the 40% of class assessments during the teaching
session.

The classification of marks fall into the following
categories:

• Distinction or above, being a mark of 75 or
greater, represented by output 1.

• Credit, being a mark between 65 and 74,
represented by output 2.

• Pass, being a mark between 50 and 64,
represented by output 3.

• Fail, being a mark less than 50, represented
by output 4.

After training, the network classified the training set
with an accuracy of 96%, and the test set with an
accuracy of 75%. Training was stopped to avoid
overtraining when the error on the test set began to
increase, which indicates the point of maximum
generalisation.  For the rest of our discussion, the
network’s output is assumed to always be correct.
This is appropriate since we are providing
explanations for the conclusions reached. It is
possible that explanations for conclusions on a test
set could be used to deduce whether or where the
network has learnt incorrectly. Here we will
concentrate on providing explanations for the
conclusions reached on the training set.

The Characteristic ON patterns for this network
were derived from the training set in the manner
described previously. The set of these patterns will be
denoted CON subsequently, using a subscript
representing the output concerned. Thus, CONFail is
the Characteristic ON input pattern for the Fail
output unit.

The Characteristic OFF patterns can not be derived
as simply as described previously. Simply averaging
the inputs that do not cause an on output is not an
accurate way of finding the Characteristic OFF
pattern.  This example network is a very good
illustration of this problem.  When trying to find the
Characteristic OFF pattern for a Pass output, the
non-Pass input patterns such as those classified as
Distinctions, Cred i t s and Fails are averaged
producing an intermediate pattern. This intermediate
pattern when input to the trained network was
classified as a Pass, and thus is not very useful as a
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Characteristic OFF pattern for the Pass output.
Since in this case we know that at most one output
unit will be on for any particular input pattern, we can
use the Characteristic ON patterns of the other
output units as the Characteristic OFF patterns for
this output unit. The set of these patterns will be
denoted COFF, using a subscript representing the
output concerned, and a superscript denoting another
output unit whose C O N  is being used. Thus,
COFFFail

Pass denotes the Characteristic OFF pattern
for the Fail output which is made up of the
Characteristic ON pattern of the Pass output.

In the following section we will derive the rules for
the Distinction output class.

6666....1111.... DDDDiiiissssttttiiiinnnnccccttttiiiioooonnnn    oooouuuuttttppppuuuutttt

The rules derived by our method are always in the
context of the input pattern used, and the output
decision. Thus, rule sets in this section are interpreted
as “IF <rule set> THEN Distinction”. In the
discussion in sections 4 and 5, the networks were
sufficiently simple, that this point was left implicit. In
the rest of this section, we will derive the rules in all
of the relevant contexts for the Distinction decision
made by the trained feed-forward network.

The Characteristic ON patterns for each of the
outputs is shown in Table 2.

CONDist CONCred CONPass CONFail

 Crs 0.7 0 0.65 0.35
 Stg 1 0.5 0.85 1
 Enr 1 1 0.98 1
 Tutgp 0.5 0.75 0.67 0.61
 lab2 0.7 0.85 0.52 0.4
 TutAss 0.4 0.7 0.44 0.4
 lab4 1 0.85 0.52 0
 H1 0.8 0.8 0.67 0.4
 H2 0.8 0.8 0.65 0
 lab7 0.7 0.55 0.5 0
 P1 1 0.7 0.52 0
 F1 0.7 0.3 0.42 0
 Mid 0.72 0.59 0.39 0.21
 lab10 0.5 0.5 0.49 0

Table 2: Characteristic ON pattern for all outputs

6666....1111....1111.... DDDDiiiissssttttiiiinnnnccccttttiiiioooonnnn    rrrreeeessssuuuulllltttt    wwwwiiiitttthhhh    iiiinnnnppppuuuutttt
ppppaaaatttttttteeeerrrrnnnn    ssssiiiimmmmiiiillllaaaarrrr    ttttoooo    CCCC OOOO NNNN DDDDiiii ssss tttt

The simplest case occurs when the input pattern is
most similar to the Characteristic ON pattern for the
output. That is, firstly the trained network on a
particular input pattern decides that the categorisation
is Distinction by turning that output unit on, and
secondly that input pattern is most similar to the
Distinction Characteristic ON pattern. Thus, the input

pattern looks like a classic Distinction case, and is
categorised as such by the trained network.

The Causal Index graph for the CONDist pattern is
shown in Figure 10.
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Figure 10: Causal Index of inputs for Mark Predictor
network – CONDist

The four positive peaks in the graph produce simple
numerical rules, combined using AND operators, as
discussed previously. These rules derived from this
pattern are shown below, in Table 3.

Character. Pattern Rule Set

CONDist (lab2 ≥ 0.44) AND (lab4 ≥ 0.23) AND
(P1 ≥ 0.27) AND (Midterm ≥ 0.37)

 

Table 3: Rules produced from the Causal Index graph for
Mark Predictor network – CONDist

This is the simplest case of rule generation, for the
Characteristic ON pattern matching the network
decision. The interpretation of these rules in the
context of the example needs some discussion. The
rules would be presented to the user after presenting
the most similar Characteristic pattern. As indicated,
that pattern was the CONDist, from Table 2.

The rules in Table 3 indicate the performance
required so as to still match the Distinction
archetype respresented by CONDist. For example, so
long as the second laboratory assessment (lab2)
mark is not below 0.44, the result will be a
Distinction mark for a particular input pattern
representing a particular student’s performance. This
explains the quite low values of the inputs in the rule
set compared with the values in the Characteristic
pattern.

The Characteristic pattern indicates that fairly high
marks are required overall to achieve a Distinction
result. The four inputs identified in the rule set in
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Table 3 are very plausible to be so significant. There
are two possible explanations for this, firstly the
weighting of these four in the final grade is high, or
secondly, the material covered in those four
assessments is representative of the material in the
final exam. While the weighting of Midterm is high,
it is also clearly representative of the material in the
final examination. The other three inputs identified as
important are not weighted particularly high in the
calculation of the final grade. Lack of a good level of
performance during laboratory exercises and the
procedural programming assignment plausibly shows
a deficiency leading to a less than Distinction
performance. A major strand of the subject is on
functional programming, and thus it is initially
surprising that the assignment F1 does not occur in
the rule set. This strand is taught at a more
introductory level, and may be either sufficiently well
understood in general, or not understood at all, that a
particularly low performance in the assignment does
not modify the final grade.

6666....1111....2222.... DDDD iiii ssss tttt iiii nnnn cccc tttt iiii oooo nnnn     rrrr eeee ssss uuuu llll tttt     wwww iiii tttt hhhh     iiii nnnn pppp uuuu tttt
ppppaaaatttttttteeeerrrrnnnn    ssssiiiimmmmiiiillllaaaarrrr    ttttoooo    CCCC OOOO NNNN CCCC rrrr eeee dddd

In this case we would assume that the most similar
Characteristic pattern is not the Distinction pattern.
However, the trained network on the particular input
pattern decides that the categorisation is Distinction
by turning that output unit on. Thus, the input pattern
looks like a classic Credit case, but is categorised as
a Distinction by the trained network. This means we
must look at the COFFDist

Cred Causal Index graph.
That is, we use the Characteristic ON pattern for a
Credit as an OFF pattern for the Distinction output.

In the Mark Predictor network example, there are no
cases of this nature. All patterns in our set which are
most similar to the Credit mark’s Characteristic ON
pattern are actually either categorised as a Credit
mark by the trained network, or the pattern satisfies
the unmodified rules for a Distinction result derived
from the CONDist pattern. The Causal Index graph is
not shown because it is essentially featureless, as no
single change in an input pattern can change the
output categorisation.

6666....1111....3333.... DDDD iiii ssss tttt iiii nnnn cccc tttt iiii oooo nnnn     rrrr eeee ssss uuuu llll tttt     wwww iiii tttt hhhh     iiii nnnn pppp uuuu tttt
ppppaaaatttttttteeeerrrrnnnn    ssssiiiimmmmiiiillllaaaarrrr    ttttoooo    CCCC OOOO NNNN PPPPaaaassssssss    

In this case the input pattern is most similar to the
Characteristic pattern corresponding to the Pass
output. Note that the actual categorisation produced
by the trained neural network was a Distinction,
notwithstanding the closer similarity of the pattern to
that of a standard Pass student. We will extract rules
here to explain the categorisation in terms of the
difference from the relevant standard patterns. Note
also that the Characteristic pattern CONPass is

referred to as COFFDist
Pass when it is being used as an

OFF pattern for the Distinction output. The Causal
Index graph is shown in Figure 11.
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Figure 11: Causal Index of inputs for Mark Predictor
network – COFFDist

Pass 

The Causal Index graph shows that a change in a
particular single variable can produce a Distinction
result from an otherwise Pass result.

The most similar Characteristic pattern is shown in
Table 2, as CONCred.

The rules produced are shown in Table 4.

Character. Pattern Rule Set

COFFDist
Pass Midterm ≥ 0.85 

Table 4: Rules produced from the Causal Index graph for
Mark Predictor network – COFFDist

Pass 

This rule set is actually formed by modifying the rule
set for the Characteristic ON pattern of the Pass
output with the rule extracted for the case of a
Distinction decision. Since there is only one term, it
is completely replaced by the modified form.

What we have found from the extracted rule, is that
there is a population of students who perform at a
passing level in continuous assessment, but do
particularly well in the Midterm examination and get
a Distinction grade. We can readily accept that a
good result in the Midterm will correlate with a good
result in the final examination.

6666....1111....4444.... DDDD iiii ssss tttt iiii nnnn cccc tttt iiii oooo nnnn     rrrr eeee ssss uuuu llll tttt     wwww iiii tttt hhhh     iiii nnnn pppp uuuu tttt
ppppaaaatttttttteeeerrrrnnnn    ssssiiiimmmmiiiillllaaaarrrr    ttttoooo    CCCC OOOO NNNN FFFFaaaaiiiillll    

In this case the input pattern is most similar to the
Characteristic pattern corresponding to the Pass
output. The Causal Index graph for this case is
shown in Figure 12.
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Figure 12: Causal Index of inputs for Mark Predictor
network – COFFDist

Pass 

As we can see, only one input, Enrolment, has any
effect. This effect is too small to change a result
which is overall consistent with a F a i l  to a
Distinction. This is not truly suprising.

For completeness,  the most  s imilar
Characteristicpattern is shown in Table 2, as
CONFail.

In subsequent discussion, we will not display graphs
with such insignificant effects.

7777 .... EEEExxxxaaaammmmpppplllleeeessss    ooooffff    RRRReeeessssuuuullllttttssss

The network to be analysed is a three layer neural
network with fourteen inputs, five hidden units and
four output units. The network has been trained on a
set of partial marks in a subject to predict the final
mark that a student will receive [2, 3].

Example 1

 Crs 0
 Stg 0.5
 Enr 0
 Tutgp 0.25
 lab2 0.4
 TutAss 0.4
 lab4 1
 H1 0.8
 H2 1.0
 lab7 0.7
 P1 1
 F1 1
 Mid 0.71
 lab10 0

Table 5: Actual input pattern for a student – p0194588

p0194588
Network Output : Distinction
Most Similar Characteristic Input : Distinction

Important Inputs [Characteristic Values]
lab2 [0.7]
lab4 [1.0]
P1 [1.0]
Midterm [0.72]

Satisfied Rule Set
(lab2 ≥ 0.38) AND (lab4 ≥ 0.23) AND
(P1 ≥ 0.27) AND (Midterm ≥ 0.37)

Next Most Likely Output : Credit

This is a straightforward result, the most similar
characteristic input pattern being that of the
Distinction and the next most likely output being the
Credit.  For the mid-session quiz (Midterm), an
input value of 0.72 is a good mark, the student
performed well on key assignments, thus the result is
consistent with experience.

Example 2

 Crs 0
 Stg 0.5
 Enr 1
 Tutgp 0.75
 lab2 0.7
 TutAss 0.7
 lab4 0.7
 H1 1
 H2 0.8
 lab7 0.4
 P1 1
 F1 0.3
 Mid 0.48
 lab10 0.5

Table 6: Actual input pattern for a student – p0185591

p0185591
Network Output : Credit
Most Similar Characteristic Input : Credit
Important Inputs [Characteristic Values]

Course [0.0]
Stage [0.5]
lab2 [0.85]
Midterm [0.59]
lab10 [0.5]

Satisfied Rule Set
(Course < 0.35) AND (Stage < 0.93) AND
(lab2 ≥ 0.39) AND (Midterm ≥ 0.12) AND
(lab10 ≥ 0.14)

Next Most Likely Output : Distinction

It is interesting to note that in this case the student
actually failed the mid session exam, however the
next most likely output predicted is a Distinction.
This seems to be unusual, however the final grade
was 71, so it is likely to be correct. The student likely
got a high mark in the final exam. Nevertheless, the
mark was predicted by the network and explained
even though the result was not obvious.
8888 .... SSSSuuuummmmmmmmaaaarrrryyyy    aaaannnndddd    CCCCoooonnnncccclllluuuussssiiiioooonnnn

Our method of extracting meaning from neural
networks to provide a useful explanation facility takes
the following format:

10



• Characteristic inputs for each output pattern are
calculated, each of these input patterns is then
used as both characteristic ON and OFF inputs
for the separate outputs of the network.

• The Causal relationship of the characteristic
input with respect to the outputs is calculated.

• This relationship is used to determine the inputs
of importance to the outputs of the network.

• Rule sets using these inputs are then generated.

• The input pattern is likened to the characteristic
inputs, the characteristic input pattern showing
the most similarity is selected and the important
inputs and the satisfied rule set is presented.

• The next most likely output is presented.

This method only fails to produce the correct rule in
6% of cases for the training set of the network used.
The separate specification of results for training
versus test cases is not required since the measure of
success is the replication of the network’s result.
That is, a rule is correct if it matches the conclusion
rather than if the conclusion is correct.

By using our explanation method, many facets of the
network’s calculations can be determined. Firstly it
becomes apparent which inputs are considered by the
network for each output. The inputs considered for
the Distinction class for example, are the inputs
lab2, lab4, P1 and Midterm. To test the accuracy of
this, the set of all inputs classified as Distinctions in
the training set had all other inputs set to zero. The
resulting input patterns were input to the network, and
in each case the Distinction classification was still
chosen by the network. To examine the overall
accuracy of the complete set of inputs considered
important, all inputs not appearing in any of the set of
inputs considered important to any of the outputs
were set to zero in each pattern in the training set. The
networks accuracy on the training set went down by
10% to 86%. Considering that over 40% of the input
data has been discarded, this is a good result.

Our explanation facility provides explanations in the
form of rules, which may be useful for expert system
knowledge acquisition.

The rule set derived using this method is limited in
application only by the selection of which rule is to
be used. This is currently performed by likening the
input pattern with the characteristic patterns.

The presentation of the next most likely output by the
explanation facility is in this case only useful for the
sake of interest of the user. Other applications of the
next most likely output may include:

• Providing a ‘safety net’ in the case of incorrect
classification, and

• Providing soft limiting boundaries – making
decisions in ‘grey areas’ (such as classifying a
mark of 64% as a Pass or a Credit) more
flexible.

The accuracy of our method is affected by the size of
the network’s training set. Characteristic inputs will
be most accurate using large training sets, which will
allow more accurate statistical methods to be used in
their generation. Nevertheless, we have achieved good
results with a training set of only 84 patterns. Our
method does not depend on the size or architecture of
the network or on any unusual construction
algorithm.
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